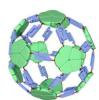

人エタンパク質ナノ粒子TIP60の応用 川上 了史 慶應義塾大学 理工学部


背景

- ●タンパク質多量体構造は、その構造均一性や生体適合性などから、医薬品応用などが期待 される分子材料である。
- ●近年のタンパク質科学の発展により、人工的に多量体構造設計が実現できるようになった。
- ●我々は、天然タンパク質の多量化機構を利用して、極めて均一性の高い中空サッカーボール型タンパク質ナノ粒子TIP60の設計と構築に成功した。

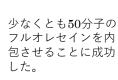
設計と応用方向性

用いた鋳型タンパク質

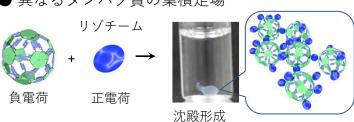
TIP60

- 1MDa越えのマーカー
- 小分子内包キャリア
- 異なるタンパク質の集積足場

Fluore


結果

● 1MDa越えのマーカー


高い均一性を有していれば、様々な分析の標準に利用できるはずである。実際に、電気泳動や動的光散乱、電子顕微鏡観察などで、その可能性を示すことができた。

▶ 異なるタンパク質の集積足場

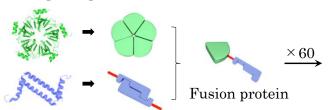
結論と今後

- TIP60は分子量やサイズの観察・分析で、標準試料として利用できることを示した。
- TIP60の構造を破壊することなく小分子化合物を内包することができた。
- TIP60の表面電荷が負に偏っている性質を利用することで、タンパク質の濃縮が実現できた。

慶應義塾大学 研究連携推進本部

 ${\it Mail: toiawasesaki-ipc@adst.keio.ac.jp}$

Applications of the artificial protein nanoparticle, TIP60


Norifumi Kawakami Faculty of Science and Technology, Keio University

Research background

- Protein supramolecules are promising for biomedical materials owing to its structural uniformity, bio-degradability and -compatibility.
- Recent advances in protein science allow to design novel protein supramolecules.
- We have designed and produced highly monodisperse soccer-ball shape hollow protein nanoparticle, TIP60, that have 1 MDa molecular weight with 22 nm diameter.

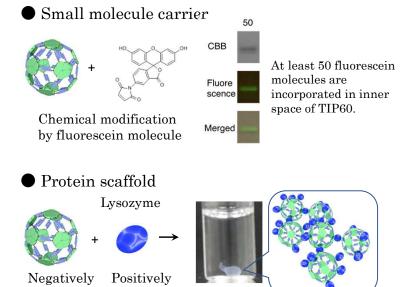
Design approach and its possible applications

Template proteins

TIP60

charged


charged


- High molecular weight marker
- Small molecule carrier
- Protein scaffold

Experimental results

High molecular weight marker

Highly homogeneous structure can be used as standard material for variety of analyses, such as electrophoresis, dynamic light scattering, and electron microscopy.

Precipitate

Conclusion and Future plan

- TIP60 can be used as standard sample for variety of analyses methods.
- Small molecules can be incorporated into inner space.
- Positively charged proteins can be trapped and condensed by TIP60.